System identification theory is a impactful tool for modelling vehicle dynamics. Aiming at the situation that the UAV flight test conditions are limited and complete flight data cannot be obtained, a method to estimate the aerodynamic angle and aerodynamic coefficients based on measurable data is proposed. Taking a flying-wing UAV as an example, the longitudinal and transverse-lateral related aerodynamic parameters are identified and calculated by the least squares method, respectively. The comparison between the test data and simulation results verifies the correctness and practicality of the methods. Considering the mathematical nature of the discriminative modelling, the method is generally applicable to fixed-wing UAVs of all aerodynamic layouts.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aerodynamic parameter identification method of unmanned aerial vehicles (UAVs)


    Beteiligte:
    Wu, Jinsong (Herausgeber:in) / Ma'aram, Azanizawati (Herausgeber:in) / Li, Hanbing (Autor:in)

    Kongress:

    Ninth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2024) ; 2024 ; Guilin, China


    Erschienen in:

    Proc. SPIE ; 13251


    Erscheinungsdatum :

    28.08.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Launcher for unmanned aerial vehicles (UAVs)

    GRONDIN TIMOTHY / SCHICHO ANDREW / DELAY PATRICK et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Unmanned Aerial Vehicles (UAVs) in Firefighting

    Orgeira-Crespo, Pedro / Rey, Guillermo / Ulloa, Carlos et al. | Springer Verlag | 2024


    Drone/Unmanned Aerial Vehicles (UAVs) Technology

    Adepoju, Omoseni | Springer Verlag | 2021


    Pothole Identification in Flexible Pavement Using Unmanned Aerial Vehicles (UAVs)

    Rocha, Joaquin Humberto Aquino / Chileno, Nahúm Gamalier Cayo / Rodriguez, Silvia Natalia Azurduy et al. | Springer Verlag | 2021