Icing on the wings of an aircraft increases drag and reduces lift, leading to a decrease in the aerodynamic performance and stability margin of UAV, which affects flight security. In order to solve the problem of icing state identification of UAV, this paper establishes a simulation model of icing on the wing of a certain type of UAV, analyses the impact of wing icing on the dynamic response of UAV, conducts simulation experiments with multiple state points and different degrees of icing, establishes a deep-learning neural network for icing state identification, and carries out the training and testing of three different strategies based on the simulation data. The results show that the icing identification method proposed in this paper has high accuracy in the prediction of icing degree and can provide a reference for the design of natural icing degree identification and prediction system for UAV.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep-learning-based icing identification method for unmanned aerial vehicle


    Beteiligte:
    Zhang, Kun (Herausgeber:in) / Lorenz, Pascal (Herausgeber:in) / Li, Deshang (Autor:in)

    Kongress:

    International Conference on Mechatronics and Intelligent Control (ICMIC 2024) ; 2024 ; Wuhan, China


    Erschienen in:

    Proc. SPIE ; 13447


    Erscheinungsdatum :

    16.01.2025





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unmanned aerial vehicle and anti-icing and de-icing system control method of unmanned aerial vehicle

    WANG HUA / SUN YONG | Europäisches Patentamt | 2021

    Freier Zugriff

    Rotor unmanned aerial vehicle laboratory icing test method

    ZHENG LI / ZHANG WENQIANG / CUI YOULIANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Unsettled Topics in Unmanned Aerial Vehicle Icing

    Hann, Richard / Johansen, Tor A. | SAE Technical Papers | 2020


    Unsettled topics in unmanned aerial vehicle icing

    Hann, Richard / Johansen, Tor Arne | TIBKAT | 2020


    Unmanned aerial vehicle identification system based on deep learning

    HUI LIN | Europäisches Patentamt | 2024

    Freier Zugriff