With the rapid economic development and the advancement of urbanization, the structure of urban road networks is becoming more and more complex. It is particularly important to provide real-time and accurate traffic flow forecasting for traffic management departments. Aiming at the importance of traffic flow parameter prediction in intelligent transportation systems, this paper proposes a traffic flow prediction method based on the Residual Network (ResNet) model. Through the processing of taxi GPS trajectory data, effective and complete traffic data is obtained. Considering characteristic factors such as weather and holidays, the spatial characteristics of traffic flow are modeled by residual convolution units for different time granularities. The different branches and regions are weighted to predict the final traffic flow for each region. The experimental results show that the design model considers the complex dynamic space-time characteristics of the region, and the predictability is improved compared with other models, which is an effective traffic flow forecasting method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic flow prediction based on residual neural network


    Beteiligte:
    Ladaci, Samir (Herausgeber:in) / Kaswan, Suresh (Herausgeber:in) / Huang, Yanguo (Autor:in) / He, Xuan (Autor:in) / Li, Luo (Autor:in) / Rao, Zehao (Autor:in)

    Kongress:

    International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023) ; 2023 ; Xiamen, China


    Erschienen in:

    Proc. SPIE ; 12759


    Erscheinungsdatum :

    10.08.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic flow prediction method based on residual decomposition recurrent neural network

    ZENG JUNCHENG / ZENG YONGQIANG / CHEN ZHIWEI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic flow prediction method based on residual network

    ZHANG XU / ZUO CHANGQI / YAN LIANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic flow prediction based on generalized neural network

    Guozhen Tan / Wenjiang Yuan / Hao Ding | IEEE | 2004


    Traffic flow prediction using neural network

    Jiber, Mouna / Lamouik, Imad / Ali, Yahyaouy et al. | IEEE | 2018


    Traffic flow prediction method based on neural network

    GUO TANGYI / DENG HONG / YANG YONG et al. | Europäisches Patentamt | 2020

    Freier Zugriff