Global maritime accidents have a wide range of spatiotemporal differentiation characteristics, and it is an interesting problem that can be tried to seek efficient and scientific algorithms to recognize the spatiotemporal differentiation characteristics of global maritime accidents. Through the analysis of the data structure of marine traffic accidents, a global spatiotemporal differentiation analysis method for marine accidents based on accident point density clustering is proposed. A two-dimensional kernel density algorithm and a density-based clustering method with noise are introduced, and a clustering fusion algorithm based on spatial meshing and point density is established to reveal the spatiotemporal differentiation characteristics of global maritime accidents. Combined marine traffic accidents with the spatial and temporal information obtained on IMO GISIS in the past 30 years, the cluster fusion algorithm is applied to reveal spatiotemporal differentiation characteristics. The results show that the data efficiency of global maritime traffic accidents has been greatly improved with the wide application of AIS. The global maritime accident hot-spots are basically stable in Western Europe, the pan-Mediterranean and East Asia, South Asia, etc. Greater cooperation among neighboring port states, can effectively improve maritime traffic safety, especially in maritime search and recuse cooperation. The clustering fusion algorithm based on spatial meshing and point density can be further applied to the scenarios application in the regional scope, so as to clearly reflect the temporal and spatial differentiation characteristics of maritime accidents in the scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A spatial-temporal analysis approach to global maritime accidents with accident point density clustering


    Beteiligte:
    Chin, Cheng Siong (Herausgeber:in) / Zhao, Wenbing (Herausgeber:in) / Cheng, Changbo (Herausgeber:in) / Liu, Weihua (Autor:in) / Hu, Shenping (Autor:in) / Xuan, Shaoyong (Autor:in) / Wang, Jinhui (Autor:in) / Han, Bing (Autor:in) / Chen, Jihong (Autor:in)

    Kongress:

    Fourth International Conference on Computer Science and Communication Technology (ICCSCT 2023) ; 2023 ; Wuhan, China


    Erschienen in:

    Proc. SPIE ; 12918


    Erscheinungsdatum :

    11.10.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A spatial-temporal analysis on maritime accidents with sample point density clustering

    Liu, Weihua / Hu, Shenping / Xuan, Shaoyong et al. | IEEE | 2023



    Temporal-spatio evolution of maritime accidents

    Kuang, Huiyang / Dong, Xinyu / Liu, Wenbin et al. | IEEE | 2023


    Preventing maritime accidents by effective management of the accident investigative process

    Kuo, C. / Universidade Federal do Rio de Janeiro | British Library Conference Proceedings | 2006