In order to solve the problem of missing target detection in traffic road target detection task due to excessive change of target scale in complex environment. An improved object detection method based on YOLOv5 is proposed, which introduces Coordinate Attention (CA), it fuses the coordinate attention mechanism into the last layer of the backbone network C3 module and the Bottleneck module in the C3 module to enhance the feature extraction ability of the target. The experimental results show that the vehicle detection accuracy of the fusion model reaches 96.5% on KITTI data set. Compared with other models, it can effectively improve the problem that the target scale of traffic road changes greatly.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-scale object detection based on attention mechanism


    Beteiligte:
    Mikusova, Miroslava (Herausgeber:in) / Sun, Shenshen (Autor:in) / Bao, Xue (Autor:in) / Wang, Xirui (Autor:in)

    Kongress:

    International Conference on Smart Transportation and City Engineering (STCE 2023) ; 2023 ; Chongqing, China


    Erschienen in:

    Proc. SPIE ; 13018


    Erscheinungsdatum :

    14.02.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Traffic prediction method based on multi-scale space-time attention mechanism

    LU ZIBAO / ZHANG JIALI / AN CHEN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Attention‐based multi‐scale feature fusion for free‐space detection

    Song, Pengfei / Fan, Hui / Li, Jinjiang et al. | Wiley | 2022

    Freier Zugriff

    Attention‐based multi‐scale feature fusion for free‐space detection

    Pengfei Song / Hui Fan / Jinjiang Li et al. | DOAJ | 2022

    Freier Zugriff