In the design process of space engineering R & D , engineers need to use a lot of existing knowledge to assist design. A modeling method of space engineering knowledge network based on ontology is proposed relying on existing Aerospace Thesaurus. Through knowledge resource supply-demand matching technology and knowledge network map, a knowledge push method for space engineering is designed combined with specific tasks. It has been preliminarily applied in the Space Engineering Data Center Platform. The tests shows that this technology can effectively improve the standardization of aerospace terminology and the accuracy of knowledge service. It also promotes space engineering R&D knowledge’s effective organization and utilization.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on knowledge modeling and knowledge push method for space engineering research and development based on ontology


    Beteiligte:
    Fu, Liping (Autor:in) / Wang, Yongli (Autor:in)

    Kongress:

    International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021) ; 2021 ; Harbin,China


    Erschienen in:

    Proc. SPIE ; 12168


    Erscheinungsdatum :

    18.03.2022





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ontology Development for Knowledge-driven Distributed Space Mission Systems Engineering

    Portelli, Lindsay / Sabatini, Matthew / Grogan, Paul T. | AIAA | 2019


    Research on Knowledge Management Based on Ontology Theory in Product Design

    Huang, W.-d. / Xie, Q. / Ding, Q.-l. | British Library Online Contents | 2007


    Ontology Modeling of Aircraft Fault Knowledge

    Zhou, Yang ;Zeng, Zhao Yang ;Tian, Bin | Trans Tech Publications | 2012



    Knowledge Modeling and Analysis for Railway Fire Accident Using Ontology-Based Knowledge Graph

    Yan, Han / Ma, Xiaoping / Chen, Fei et al. | Springer Verlag | 2022