This study introduces a number of enhancements to the YOLOX-S target detection network in an effort to address the issues of heavy traffic at the ferry, complex traffic environment, and sluggish detection speed. The conventional residual block in CSPDarknet, which has a significant number of parameters and high equipment requirements, is replaced by the MBConv module in the deep layer and by the Fuse-MBConv module in the shallow layer. This is completed for YOLOXS's backbone feature extraction network, CSPDarknet. The enhanced model's mAP value is 83.39%, 2.7% more than the baseline method. The experimental findings demonstrate that the enhanced method presented in this study is appropriate for the real-time detection of moving objects, such as cars and people, in the vicinity of the ferry entrance


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle pedestrian detection algorithm at ferry entrance based on improved YOLOX


    Beteiligte:
    Lv, Zhihan (Herausgeber:in) / Ahmad, Badrul Hisham bin (Herausgeber:in) / Liu, Yushan (Autor:in) / Yang, Xinyi (Autor:in) / Liu, Weikang (Autor:in) / Liu, Qinghua (Autor:in) / Zhao, Mengdi (Autor:in)

    Kongress:

    Third International Conference on Image Processing and Intelligent Control (IPIC 2023) ; 2023 ; Kuala Lumpur, Malaysia


    Erschienen in:

    Proc. SPIE ; 12782 ; 127820M


    Erscheinungsdatum :

    09.08.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    YOLOX-based dynamic vehicle target detection

    Wang, Mingshen / Zhuang, Xufei / Zhao, Haitong | IEEE | 2022


    Residual YOLOX-based Ship Object Detection Method

    Liu, Ming / Zhu, Changming | IEEE | 2022



    Ship detection in infrared images via bounding boxes based on improved YOLOX

    Qiu, Xinjie / Li, Zhiyu / Han, Fenglei et al. | SPIE | 2022


    Research on YOLOX-based tire defect detection method

    Qinghua, Qi / Xiaowei, Xu / Liu, Zhan et al. | IEEE | 2022