The bike-sharing scheme has become extremely prevalent in large countries around the world. The appearance of it raises a lot of advantages such as reducing greenhouse gas emissions, alleviating traffic congestion, especially implicitly increasing exercise and enhancing health. However, the management of shared bicycles scattered everywhere in the city has become a serious problem. Placing enough bicycles at a certain time in high-demand places can maximize the utilization of bicycles and improve the convenience of people. So the forecast for bike-sharing demand is quite necessary to improve the distribution of bicycles which ensures enough bicycles for the public all the time. In this paper, we study the prediction of bike-sharing demand in London using multiple linear regression and random forest methods based on historical rental bicycle data. We analyze the descriptive statistics and conduct feature engineering using rich relevant factors. The experimental results demonstrate that the random forest model achieves a superb performance with an R-squared value of 0.95 on the test set. This research can be applied in bicycle management to increase bicycle utilization and improve convenience.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction for bike-sharing demand in London using multiple linear regression and random forest


    Beteiligte:
    Zaidi, Habib (Herausgeber:in) / Shmaliy, Yuriy S. (Herausgeber:in) / Meng, Hongying (Herausgeber:in) / Kolivand, Hoshang (Herausgeber:in) / Sun, Yougang (Herausgeber:in) / Luo, Jianping (Herausgeber:in) / Alazab, Mamoun (Herausgeber:in) / Gu, Keyu (Autor:in) / Lin, Yi (Autor:in)

    Kongress:

    Fifth International Conference on Artificial Intelligence and Computer Science (AICS 2023) ; 2023 ; Wuhan, China


    Erschienen in:

    Proc. SPIE ; 12803


    Erscheinungsdatum :

    16.10.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    London bike sharing

    Belli, Edoardo | DataCite | 2024


    Station-level Demand Prediction for Bike-Sharing System

    Ramesh, Arthi Akilandesvari / Nagisetti, Sai Pavani / Sridhar, Nikhil et al. | IEEE | 2021


    Station-Level Hourly Bike Demand Prediction for Dynamic Repositioning in Bike Sharing Systems

    Wu, Xinhua / Lyu, Cheng / Wang, Zewen et al. | Springer Verlag | 2019


    Features that influence bike sharing demand

    Cortez-Ordoñez, Alexandra / Vázquez, Pere-Pau / Sanchez-Espigares, Jose Antonio | Elsevier | 2024

    Freier Zugriff

    A Method of Bike Sharing Demand Forecasting

    Liu, Xiao Na ;Wang, Jian Jun ;Zhang, Teng Fei | Trans Tech Publications | 2014