The realization of on- and off-road autonomous navigation of Unmanned Ground Vehicles (UGVs) requires real-time motion planning in the presence of dynamic objects with unknown trajectories. To successfully plan paths and to navigate in an unstructured environment, the UGVs should have the difficult and computationally intensive competency to predict the future locations of moving objects that could interfere with its path. This paper details the development of a combined probabilistic object classification and estimation theoretic framework to predict the future location of moving objects, along with an associated uncertainty measure. The development of a moving object testbed that facilitates the testing of different representations and prediction algorithms in an implementation-independent platform is also outlined.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Moving object prediction for off-road autonomous navigation


    Beteiligte:

    Kongress:

    Unmanned Ground Vehicle Technology V ; 2003 ; Orlando,Florida,United States


    Erschienen in:

    Erscheinungsdatum :

    30.09.2003





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PREDICTION OF ROAD GRADE FOR AUTONOMOUS VEHICLE NAVIGATION

    PULLAGURLA HARISH / MILLER ZACHARY / CUNNINGHAM ANDREW | Europäisches Patentamt | 2025

    Freier Zugriff

    AUTONOMOUS NAVIGATION OF ROAD INTERSECTIONS

    LIN SHU-KAI / ANG HIAP LEE / HERBST EVAN | Europäisches Patentamt | 2025

    Freier Zugriff

    Autonomous navigation based on road signatures

    STEIN GIDEON / SPRINGER OFER / FERENCZ ANDRAS | Europäisches Patentamt | 2021

    Freier Zugriff

    AUTONOMOUS NAVIGATION BASED ON ROAD SIGNATURES

    STEIN GIDEON / SPRINGER OFER / FERENCZ ANDRAS | Europäisches Patentamt | 2017

    Freier Zugriff

    Road Boundary Detection for Autonomous Vehicle Navigation

    Davis, Larry S. / Kushner, Todd R. | SPIE | 1985