Relative position detection sensor of high speed maglev train is one of the most important sensors in train positioning and speed measurement system. There is a complex circuit structure inside the sensor. How to ensure the reliability of sensors is the key problem to ensure the safe operation of maglev train, it is necessary to detect and diagnose the faults of the sensor which has been replaced or just left the factory. Kernel principal component analysis (KPCA) is used to diagnose sensor faults in this paper. This method is based on sensor data. It has the advantages of simplicity, convenience and high accuracy. The simulation and experimental results show that this method has a good effect on sensor detection and diagnosis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault detection and diagnosis of relative position detection sensor for high speed maglev train based on kernel principal component analysis


    Beteiligte:
    Dai, Chunhui (Autor:in) / Deng, Peng (Autor:in) / Long, Zhiqiang (Autor:in)

    Kongress:

    Eleventh International Conference on Signal Processing Systems ; 2019 ; Chengdu,China


    Erschienen in:

    Proc. SPIE ; 11384


    Erscheinungsdatum :

    31.12.2019





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Fault Diagnosis of High Speed Maglev Train

    Yuan, Jian-Jun / Cui, Wei-Qi / Chen, Jin-Liang et al. | ASCE | 2015


    High-speed maglev train speed measurement sensor and maglev train

    LYU YANG / HU ZHONGZHONG / ZHENG LIANGGUANG et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    High-speed maglev train propelling device and high-speed maglev train

    FAN ZHUXIA / XIN BENYU / YUAN XIANZHEN et al. | Europäisches Patentamt | 2020

    Freier Zugriff