Accurate estimation of accelerometer biases in Inertial Measurement Units (IMUs) is crucial for reliable Unmanned Aerial Vehicle (UAV) navigation, particularly in GPS-denied environments. Uncompensated biases lead to an unbounded accumulation of position error and increased velocity error, resulting in significant navigation inaccuracies. This paper examines the effects of accelerometer bias on UAV navigation accuracy and introduces a vision-aided navigation system. The proposed system integrates data from an IMU, an altimeter, and an optical flow sensor (OFS), employing an Extended Kalman Filter (EKF) to estimate both the accelerometer biases and the UAV’s position and velocity. This approach reduces the accumulation of velocity and positional errors. The effectiveness of the method was validated through simulation experiments involving a UAV navigating in circular and straight-line trajectories. Simulation results show that the proposed approach significantly enhances UAV navigation performance, providing more accurate estimates of both the state and accelerometer biases while reducing error growth through the use of vision aiding from an Optical Flow Sensor.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-integrated EKF approach for accelerometer bias compensation in UAVs


    Beteiligte:
    Kadar, Ivan (Herausgeber:in) / Blasch, Erik P. (Herausgeber:in) / Grewe, Lynne L. (Herausgeber:in) / Belfadel, Djedjiga (Autor:in) / Haessig, David (Autor:in) / Chibane, Cherif (Autor:in)

    Kongress:

    Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIV ; 2025 ; Orlando, Florida, United States


    Erschienen in:

    Proc. SPIE ; 13479 ; 134790B


    Erscheinungsdatum :

    28.05.2025





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Thermal bias drift compensation of MEMS accelerometer based on relevance vector machine

    Zhe, X. / Yunfeng, L. / Jingxin, D. | British Library Online Contents | 2013


    Integrated vision/inertial navigation method of UAVs in indoor environment

    Wang, Tingting / Cai, Zhihao / Wang, Yingxun | British Library Online Contents | 2018


    Vision-based Positioning for UAVs

    Hu, Xiao | BASE | 2021

    Freier Zugriff

    Calibration of accelerometer triad of an IMU with drifting Z-accelerometer bias

    Hung, J.C. / Thacher, J.R. / White, H.V. | Tema Archiv | 1989


    Vision-Based Obstacle Avoidance for UAVs

    Watanabe, Yoko / Calise, Anthony / Johnson, Eric | AIAA | 2007