This article derives an improved robust Huber-based divided difference filter by using the Huber’s technique, in which the nonlinear measurement function is directly used in the nonlinear regression equation instead of the linear or statistical approximation. The presented filtering algorithm exhibits robustness against the deviations from the Gaussian error distribution and has better estimate accuracy compared with the Huber-based divided difference filter. This filter is applied to a benchmark problem of estimating the trajectory of an entry body from discrete-time range data measured by a radar tracking station. Simulation results indicate that the proposed filter algorithm outperforms the previous methods in terms of robustness and accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved robust Huber-based divided difference filtering


    Beteiligte:
    Li, Wei (Autor:in) / Liu, Meihong (Autor:in) / Duan, Dengping (Autor:in)


    Erscheinungsdatum :

    01.09.2014


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Huber-Based Divided Difference Filtering

    Christopher Karlgaard / Hanspeter Schaub | AIAA | 2007


    Nonlinear regression Huber-based divided difference filtering

    Li, Wei / Liu, Meihong | SAGE Publications | 2017