This article deals with the dynamic properties of individual wheel electric powertrains for fully electric vehicles, characterised by an in-board location of the motor and transmission, connected to the wheel through half-shafts. Such a layout is applicable to vehicles characterised by significant power and torque requirements where the adoption of in-wheel electric powertrains is not feasible because of packaging constraints. However, the dynamic performance of in-board electric powertrains, especially if adopted for anti-lock braking or traction control, can be affected by the torsional dynamics of the half-shafts. This article presents the dynamic analysis of in-board electric powertrains in both the time domain and the frequency domain. A feedback control system, incorporating state estimation through an extended Kalman filter, is implemented in order to compensate for the effect of the half-shaft dynamics. The effectiveness of the new controller is demonstrated through analysis of the improvement in the performance of the traction control system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The effect of half-shaft torsion dynamics on the performance of a traction control system for electric vehicles


    Beteiligte:


    Erscheinungsdatum :

    2012-09-01


    Format / Umfang :

    15 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt







    Shaft Design for Electric Traction Motors

    Liang, Jianbin / Jiang, James Weisheng / Bilgin, Berker et al. | IEEE | 2018


    MPC-based Traction Control for Electric Vehicles

    Palma, Alvaro / Reyes, Agustin / Rohten, Jaime et al. | IEEE | 2022