The impingement disturbance characteristics of the hydrazine thruster plumes have been examined comprehensively for the ROCSAT-1 satellite. In this study, the velocity and temperature distributions at the nozzle exit are obtained from the nozzle flowfield analysis. The axial velocity, transverse velocity and temperature profiles are further correlated with the curve-fitting procedure for resolving inflow properties of molecules ejected into a vacuum. The free-molecular direct simulation Monte Carlo technique is used to describe the particle nature of the distant plume flow behaviour near the impingement surface. The inflow molecular motions as well as the collision interactions between the molecules and the solid surface are treated on a probabilistic basis. On the other hand, the inter-collisions among molecules are considered to be relatively unimportant in the far-field plume region. A reasonable number of simulated molecules is also employed to reproduce the fluid behaviour in the macroscopic level. The predicted disturbance torques and thrust loss are found to be much less than the design control torques and the nominal thrust force for ROCSAT-1 satellite, indicating that the plume impingement effect will not cause any performance deterioration of the propulsive function.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Determination of plume impingement disturbance characteristics for the ROCSAT-1 satellite


    Beteiligte:
    Yang, A-S (Autor:in) / Kuo, T-C (Autor:in)


    Erscheinungsdatum :

    01.05.2002


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Satellite Disturbance Due to Thruster Plume Impingement on Solar Array

    Parvez, S. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 1994


    Daily Repetitive Imaging from ROCSAT-2 Satellite

    Wu, An-Ming / Wu, Frank / Shieh, Ching-Jyh | AIAA | 2004