A fault diagnosis method for underwater thruster based on Random Forest Regression (RFR) and Support Vector Machine (SVM) is proposed in this paper. Aiming at the problem of insufficient fault diagnosis accuracy caused by the extremely unbalanced scale of normal samples and fault samples, a data argumentation method of fault samples based on RFR is proposed. Considering the over-fitting phenomenon of machine learning in the case of small samples, tsfresh package, and kernel principal component analysis (KPCA) are used to extract features from thruster time series data, and then the SVM is used to train the thruster fault diagnosis model. Finally, the effectiveness of the proposed method is verified by experiment in a pool environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A fault diagnosis method for underwater thruster based on RFR-SVM


    Beteiligte:
    Chu, Zhenzhong (Autor:in) / Li, Zhiqiang (Autor:in) / Gu, Zhenhao (Autor:in) / Chen, Yunsai (Autor:in) / Zhang, Mingjun (Autor:in)


    Erscheinungsdatum :

    01.05.2023


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

    Yu-shan Sun / Xiang-rui Ran / Yue-ming Li et al. | DOAJ | 2016

    Freier Zugriff

    UNDERWATER THRUSTER FAULT DIAGNOSIS METHOD AND DIAGNOSIS SYSTEM BASED ON DYNAMIC ADJUSTMENT OF PREDICTION BEAT

    YIN BAOJI / XU WENXING / TANG WENXIAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Research of the thruster fault diagnosis for open-frame underwater vehicles

    Wang, Yujia / Jin, Zhixian / Zhang, Mingjun | Tema Archiv | 2006