Tilt rotor unmanned aerial vehicles exhibit their effectiveness via a novel and convenient structure. However, the flight control system is a critical problem in need of a robust solution. Focusing on its flight features, which display strong nonlinear and varying dynamics, caused by complexity in the aerodynamic layout and tilting structure, a practical control scheme is proposed to meet such technical issues. This paper first develops the nonlinear model, consisting of the interference between rotors and the wing body, relying on wind tunnel technology. A simplified linear model that decomposes the longitudinal and lateral components is used in order to facilitate controller design. Then, a time-scale separation decoupling control scheme based upon active disturbance rejection control is proposed to cope with control challenges. Introducing the concept of virtual control input, an effective control allocation is obtained by choosing the appropriate bandwidth in the frequency domain. The extended state observer is applied to estimate and compensate for unknown total disturbances and model uncertainties. Finally, robustness verification, successful test-bench experiments, and practical flight tests that show the fast tracking and disturbance rejection of the active disturbance rejection control controller are discussed. The proposed practical coupling rejection control design demonstrates its capability to employ a single input single output method to control a tri-tiltRotor flying wing unmanned aerial vehicle relying on active disturbance rejection control.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Practical control implementation of tri-tiltRotor flying wing unmanned aerial vehicles based upon active disturbance rejection control


    Beteiligte:
    Wang, Zian (Autor:in) / Gong, Zheng (Autor:in) / Chen, Yongliang (Autor:in) / Sun, Mingwei (Autor:in) / Xu, Jinfa (Autor:in)


    Erscheinungsdatum :

    2020-03-01


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    TILTROTOR UNMANNED AERIAL VEHICLE AND WING ASSEMBLY THEREOF

    SUN WEI / ZHANG HAILANG | Europäisches Patentamt | 2020

    Freier Zugriff

    Rocker-based flying wing control unmanned aerial vehicle

    YANG PING'AN | Europäisches Patentamt | 2022

    Freier Zugriff

    Tiltrotor unmanned aerial vehicle

    MALLARD BRAD | Europäisches Patentamt | 2017

    Freier Zugriff