This article proposes a method for crack identification using a wavelet-based neural network (NN; wave-net). The input data for the wave-net training are both global and local in-plane vibrational parameters of beam-like structures. In this study, the vibrational parameters of intact and damaged beams are obtained using the finite element method. Different cracks are introduced in the span of the beam with different locations and depths to obtain necessary data for training NN. The identification results are compared with those of some convectional NNs including radial basis function and multilayer perceptron ones. Results show good accuracy and efficiency of the proposed NN method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Crack detection in beam-like structures using a wavelet-based neural network


    Beteiligte:
    Nematollahi, M A (Autor:in) / Farid, M (Autor:in) / Hematiyan, M R (Autor:in) / Safavi, A A (Autor:in)


    Erscheinungsdatum :

    01.10.2012


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Discrete wavelet transform–neural network crack-like damage identification of welds on chassis cross members

    Rezvani, Yadollah / Sharifi K, Arman / Azadi, Shahram et al. | SAGE Publications | 2012



    Irregular Continuum Structures Damage Detection based on Wavelet Transform and Neural Network

    Hamidian, Davood / Salajegheh, Eysa / Salajegheh, Javad | Online Contents | 2018


    Irregular Continuum Structures Damage Detection based on Wavelet Transform and Neural Network

    Hamidian, Davood / Salajegheh, Eysa / Salajegheh, Javad | Springer Verlag | 2018