The effects of dwell time on the mixture formation and combustion processes of diesel spray are investigated experimentally. A commercial multihole injector with a 0.123 mm hole diameter is used to inject the fuel. The injection procedure is either a single or split injection with different dwell times, whereas the total amount of injected fuel mass is 5.0 mg per hole. Three dwell times are selected, that is, 0.12, 0.32 and 0.54 ms, with a split ratio of 7:3 based on previous findings. The vapour phase is observed, and the mixture formation pertaining to the equivalence ratio is analysed using the tracer laser absorption scattering (LAS) technique. A high-speed video camera is used to visualise the spray combustion flame luminosity, whereas a two-colour pyrometer system is used to evaluate the soot concentrations and flame temperature. An analysis of the mixture formation based on the spray evaporating condition reveals a more concentrated area of the rich mixture within a 0.32 ms dwell time. In the shortest dwell time of 0.12 ms, the equivalence ratio distribution decreases uniformly from the rich mixture region to the lean mixture region. In the case involving a shorter dwell time, a suitable position for the second injection around the boundaries of the first injection is obtained by smoothly growing the lean mixture and avoiding the large zone of the rich mixture. Therefore, the shortest dwell time is acceptable for mixture formation, considering the overall distribution of the equivalence ratios. Spray combustion analysis results show that the soot formation rate of the single injection and 0.32 ms dwell time case is high and decreases quickly, implying a rapid reduction in the high amount of soot. Consequently, 0.12 ms can be considered the optimal dwell time due to the ignition delay and relatively low soot emission afforded.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effects of dwell time of split injection on mixture formation and combustion processes of diesel spray


    Beteiligte:
    Chandra Ray, Samir (Autor:in) / Kim, Jaeheun (Autor:in) / Kakami, Scinichi (Autor:in) / Nishida, Keiya (Autor:in) / Ogata, Youichi (Autor:in)


    Erscheinungsdatum :

    01.08.2022


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Effects of split ratio of diesel spray injection on mixture formation and combustion process

    Ray, Samir Chandra / Kim, Jaeheun / Kakami, Scinichi et al. | SAGE Publications | 2021



    Effects of ratio and dwell of split injection on fuel spray and mixture formation process under evaporating, non-reacting condition

    Kim, Jaeheun / Kakami, Shinichi / Nishida, Keiya et al. | British Library Conference Proceedings | 2019



    Split Injection Spray Development, Mixture Formation, and Combustion Processes in a Diesel Engine Piston Cavity: Rig Test and Real Engine Results

    Shiwaku, Tomoya / Yasaki, Shintaro / Nishida, Keiya et al. | British Library Conference Proceedings | 2018