The primary purpose of this study was to investigate improved numerical techniques for predicting flows through multistage compressors. The vehicle chosen for this study was the Pennsylvania State University Research Compressor (PSRC). The PSRC facility consists of a 3 1/2-stage axial flow compressor which shares design features which are consistent with embedded stages of modern gas turbine engine axial flow compressors. In Part 2 of this two-part paper, time-dependent predictions of rotor- stator-rotor aerodynamic interactions are employed to quantify the levels and distribution of deterministic stresses resulting from the average-passage flow field description. Details of the spanwise and blade-to- blade distributions of the velocity correlations are examined and compared with results based on physical deterministic flow structures such as blade wakes and clearance flows. The predicted ‘apparent’ wake profile decay resulting from the interaction of the wake through a downstream blade row is presented and compared with test data. This ‘apparent’ wake profile decay is employed to define a simplified model for deterministic stress correlations in a steady state flow field prediction scheme which retains the ‘mixing- plane’ methodology. Calculations based on this proposed model are described and predicted results are compared with both time-dependent predictions and test data. The resulting prediction strategy is computationally efficient and also contains sufficient physical realism to permit its use in design studies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aerodynamic modelling of multistage compressor flow fields Part 2: Modelling deterministic stresses


    Beteiligte:
    Hall, E J (Autor:in)


    Erscheinungsdatum :

    1998-02-01


    Format / Umfang :

    17 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch