Light-weight adhesively bonded aluminum hat sections under axial compression can be used for energy absorption as a crash component in the vehicle. In order to obtain a comprehensive evaluation on safety and performance of this type of structure, the roles of adhesives as well as the aluminum adherend were investigated, and it was necessary to establish an appropriate FEA model which can be used for structural failure prediction and energy absorption response. It was found that the global behavior of short length adhesively bonded hat sections under axial compression is primarily governed by large plastic buckling deformation, and that the main contribution of the adhesive is to present separation of the flanges and corresponding reductions of effective flange thickness.This paper examines several different ABAQUS finite element modeling approaches so as to finalize the optimum element configurations which can be employed to deal with large quasi-static buckling deformations when structural failure has to be considered and global deformation behavior is to be predicted. In the simulation, both material and geometry nonlinearity was taken into account. Global load response from the computational simulation was compared with that of axial compression tests.
Computational Simulation of Adhesively Bonded Aluminum Hat Sections Under Plastic Buckling Deformation
Sae Technical Papers
International Body Engineering Conference & Exposition ; 2000
03.10.2000
Aufsatz (Konferenz)
Englisch
British Library Conference Proceedings | 2001
|Computational Approach for Adhesively Bonded Composite Joints
British Library Conference Proceedings | 2000
|Buckling Initiation and Disbond Growth in Adhesively Bonded Composite Flanges
British Library Conference Proceedings | 2003
|