The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a “swarm” concept of operations. The swarm, a collection of vehicles traveling at high speeds and in close proximity, will require management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared-autonomy approach in which the strengths of both human drivers and machines are employed in concert for this management. A fuzzy logic-based control implementation is combined with a genetic algorithm to select the shared-autonomy architecture and sensor capabilities that optimize swarm operations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimization for Shared-Autonomy in Automotive Swarm Environment


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Sengstacken, Aaron (Autor:in) / DeLaurentis, Daniel (Autor:in) / Bai, Sue (Autor:in)

    Kongress:

    SAE World Congress & Exhibition ; 2009



    Erscheinungsdatum :

    20.04.2009




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Optimization of shared-autonomy in automotive swarm environment

    Bai,S. / Sengstacken,A. / DeLaurentis,D. et al. | Kraftfahrwesen | 2009


    CARACaS for USV swarm autonomy

    Brizzolara, Robert / Wolf, Michael | NTRS | 2017


    Shared Autonomy for Remote Collaboration

    CAMILLI RICHARD / PHUNG AMY / BILLINGS GIDEON et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Reinforcement Learning for Shared Autonomy Drone Landings

    Backman, Kal / Kulić, Dana / Chung, Hoam | ArXiv | 2022

    Freier Zugriff

    Adaptable UAV Swarm Autonomy and Formation Platform

    Srivastava, Divya / Pakkar, Roxanna / Langrehr, Austin et al. | IEEE | 2019