The High Pressure Oxidizer Turbine (HPOT) discharge temperature of the Space Shuttle Main Engine (SSME) was estimated using Radial Basis Function Neural Networks (RBFNN) during the startup transient. Estimation was performed for both nominal engine operation and during simulated input sensor failures. The K-means clustering algorithm was used on the data to determine the location of the basis function centers. The performance of the RBFNN is compared with that of a feedforward neural network trained with the Quickprop learning algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SSME Parameter Modeling with Neural Networks


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    Aerospace Atlantic Conference & Exposition ; 1994



    Erscheinungsdatum :

    1994-04-01




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    SSME sensor modeling using radial basis function neural networks

    Wheeler, Kevin / Dhawan, Atam / Meyer, Claudia | AIAA | 1994



    The application of neural networks to the SSME startup transient

    MEYER, CLAUDIA / MAUL, WILLIAM | AIAA | 1991


    Structural tailoring of SSME turbopump blades (SSME/STAEBL)

    RUBINSTEIN, R. / CHAMIS, C. | AIAA | 1986