A multi-year, multi-vehicle study was conducted to quantify the aerodynamic drag changes associated with drag reduction technologies for light-duty vehicles. Various technologies were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent winds. The technologies investigated include active grille shutters, production and custom underbody treatments, air dams, wheel curtains, ride height control, side mirror removal and combinations of these.This paper focuses on mean surface-, wake-, and underbody-pressure measurements and their relation to aerodynamic drag. Surface pressures were measured at strategic locations on four sedans and two crossover SUVs. Wake total pressures were mapped using a rake of Pitot probes in two cross-flow planes at up to 0.4 vehicle lengths downstream of the same six vehicles in addition to a minivan and a pick-up truck. A smaller rake was used to map underbody total pressures in one cross-flow plane downstream of the rear axle for three of these vehicles.The results link drag reduction due to various technologies with specific changes in vehicle surface, rear underbody and wake pressures, and provide a database for numerical studies. In particular, the results suggest that existing or idealized prototype technologies such as active grille shutters, sealing the external grille and ride height control reduce drag by redirecting incoming flow from the engine bay or underbody region to smoother surfaces above and around the vehicle. This mechanism can enhance the reduction in wheel drag due to reduced wheel exposure at lowered ride height. Sealing the external grille was found to redirect the flow more efficiently than closing the grille shutters, and resulted in greater drag reduction. Underbody treatments were also found in some cases to redistribute the flow around the vehicle to reduce pressure drag in addition to underbody friction drag. The magnitude and spatial extent of the measured pressure changes due to the various technologies were often consistent with the amount of drag reduction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements


    Weitere Titelangaben:

    Sae Int. J. Adv. and Curr. Prac. in Mobility


    Beteiligte:
    Schmitt, Andreas (Autor:in) / Raeesi, Arash (Autor:in) / Caffrey, Cheryl (Autor:in) / de Souza, Fenella (Autor:in) / Belzile, Marc (Autor:in)

    Kongress:

    WCX SAE World Congress Experience ; 2019



    Erscheinungsdatum :

    2019-04-02


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Investigation of a trailer underbody fairing for heavy vehicle aerodynamic drag reduction

    Ortega,J.M. / Salari,K. / Lawrence Livermore National Labs.,US | Kraftfahrwesen | 2008


    Underbody aerodynamics: Drag coefficient reduction in road vehicles

    Bohrer, A. / Cervieri, A. / Rodrigues, A. F. A. et al. | SAE Technical Papers | 2018


    UNDERBODY AERODYNAMICS: DRAG COEFFICIENT REDUCTION IN ROAD VEHICLES

    Rodrigues, Antonio Flavio Aires / Cervieri, André / Gertz, Luiz Carlos et al. | British Library Conference Proceedings | 2018


    Investigation and Development of Underbody Aerodynamic Drag Reduction Devices for Trailer Trucks

    Ibrahim, Mohamed / Agelin-chaab, Martin | British Library Conference Proceedings | 2018