The overall vision of this project was to develop a new technology that will be an enabler to reduce design and development time of HVAC systems by an order of magnitude. The objective initially was to develop a parametric model of an automotive HVAC Windshield Defrost Duct coupled to a passenger compartment. It can be used early on in the design cycle for conducting coarse packaging studies by quickly exploring “what-if” design alternatives. In addition to the packaging studies, performance of these design scenarios can be quickly studied by undertaking CFD simulation and analyzing flow distribution and windshield melting patterns. The validated geometry and CFD models can also be used as knowledge building tools to create knowledge data warehouses or repositories for precious lessons learned.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2001 World Congress ; 2001



    Erscheinungsdatum :

    2001-03-05




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    A parametric approach for rapid design and analysis of automotive HVAC defrost systems

    Hill,W.R. / Sringari,S. / General Motors,US | Kraftfahrwesen | 2001


    A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems

    Hill, W. R. / Sringari, S. / Society of Automotive Engineers | British Library Conference Proceedings | 2001


    HVAC defrost outlet airflow control

    ROTHENBERG MARK | Europäisches Patentamt | 2020

    Freier Zugriff

    HVAC Defrost Outlet Airflow Control

    ROTHENBERG MARK | Europäisches Patentamt | 2019

    Freier Zugriff

    Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

    Luzzato, Charles / Mukutmoni, Devadatta / Martins, Diogo et al. | SAE Technical Papers | 2021