This work describes the development of a three-dimensional finite element model of the human ankle/foot complex. This model depicts the primary elements of a 50th percentile human ankle. It includes all the bones of the foot up to the distal tibia/fibula. It also contains the soft tissues of the plantar surface of the foot along with most of the ankle joint ligaments and retinacula. To calibrate the model, a plate with various initial velocities of 5, 7.5 and 10 mph is impacted at the plantar surface of the foot. The model is strictly stabilized by the intrinsic anatomical geometry and the ligamentous structure. It demonstrates to a great extent its capacity to replicate the dynamic response. Global responses of output acceleration and force time histories are obtained and compared reasonably well with experimental data.The ankle model is viewed as a first step in a complicated process leading towards the ability to assess hard and soft tissue injury and towards the development of an enhanced ankle injury criterion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    40th Stapp Car Crash Conference (1996) ; 1996



    Erscheinungsdatum :

    1996-11-01




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    A Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading

    Tannous, R. E. / Bandak, F. A. / Toridis, T. G. et al. | British Library Conference Proceedings | 1996




    Biomechanics of Ankle and Hindfoot Injuries in Dynamic Axial Loading

    McMaster, J. / Parry, M. / Wallace, W. A. et al. | British Library Conference Proceedings | 2000


    Biomechanics of ankle and hindfoot injuries in dynamic axial loading

    McMaster,J. / Parry,M. / Wallace,W.A. et al. | Kraftfahrwesen | 2000