The present article addresses the gain scheduling of proportional-integral-differential (PID) controllers using fuzzy set theory coupled with a metaheuristic optimization technique to control the vehicle nonlinear suspension system. The nonlinearities of the vehicle suspension system are due to the asymmetric piecewise dampers, quadratic tire stiffness, and the cubical spring stiffness. Conventional PID controller suffers from the low performance subject to modeling nonlinearities, while fuzzy logic controller (FLC), as a universal approximator, has the capacity to deal with the nonlinear, stochastic, and complex models. However, finding the optimal Mamdani FLC rules is still a challenging task in addition to a proper architecture of the membership functions (MFs). As a remedy to this drawback, particle swarm optimization (PSO) technique is employed in this article to improve the efficiency of the FLC-based PID controllers. The proposed nonlinear controller is suggestive of the decreased overshoot and reduced settling time for the heave and pitch motions of the half-vehicle model. The satisfactory performance of the controller, when tires are subject to random excitations, to reduce the peak magnitude is observable in a relatively less computational time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    PSO-Fuzzy Gain Scheduling of PID Controllers for a Nonlinear Half-Vehicle Suspension System


    Weitere Titelangaben:

    Sae International Journal of Passenger Cars. Mechanical Systems
    Sae Int. J. Passeng. Cars - Mech. Syst


    Beteiligte:
    Li, Bin (Autor:in) / Taghavifar, Hamid (Autor:in)


    Erscheinungsdatum :

    2018-11-19


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Fuzzy Gain-Scheduling PID for UAV Position and Altitude Controllers

    Melo, Aurelio G. / Andrade, Fabio Augusto de Alcantara / Guedes, Ihannah P. et al. | BASE | 2022

    Freier Zugriff