In the Kmeans cluster segmentation used in traffic scenes, there are often zone optimization and over-segmentation problems caused by the algorithm randomly assigning the initial cluster center. In order to improve the target extraction effect in traffic road scenes, this article proposes an improved Kmeans (IM-Kmeans) method.The simulation and experimental comparisons show that the IM-Kmeans algorithm has higher clustering accuracy than the traditional Kmeans algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved Kmeans Algorithm for Detection in Traffic Scenarios


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Chen, Guang (Autor:in) / Liu, Xiangyong (Autor:in)

    Kongress:

    Automotive Technical Papers ; 2019



    Erscheinungsdatum :

    17.06.2019




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Road network partitioning method based on Canopy-Kmeans clustering algorithm

    Xiaohui Lin / Jianmin Xu | DOAJ | 2020

    Freier Zugriff

    Automatic charging pile fault detection method and system based on Mini-Batch-Kmeans algorithm

    JI YU / WANG MINGXIN / HU SHANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    CTAFFNet: CNN–Transformer Adaptive Feature Fusion Object Detection Algorithm for Complex Traffic Scenarios

    Dong, Xinlong / Shi, Peicheng / Liang, Taonian et al. | Transportation Research Record | 2024


    SIMULATING TRAFFIC SCENARIOS

    CHEHADE ABDALLAH / KASSAR SARI / SAVARGAONKAR MAYURESH VIJAY et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Traffic Sign Detection Algorithm Based on Improved YOLOv7

    Wang, Haodong / Zhang, Xindong | IEEE | 2024