Field surveys are frequently used to monitor quality levels in the automotive industry. They generate models that reveal the factors which drive customer satisfaction and purchase intent. In this way, companies can determine the areas which require improvement actions or planning for future products that are better suited for customer expectations.Unlike standard regression models, the binary logistic regression is appropriate for non-continuous binary responses. It matches customer satisfaction metrics, which can be evaluated as either “satisfied” or “not satisfied”. This paper presents the binary logistic regression as an alternative to construct customer satisfaction models. A case study of the analysis of a vehicle in the Brazilian market is used to illustrate its application.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of Vehicle Customer Satisfaction Data using the Binary Logistic Regression


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Magri, Marcelo (Autor:in)

    Kongress:

    2008 SAE Brasil Congress and Exhibit ; 2008



    Erscheinungsdatum :

    07.10.2008




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Analysis of Vehicle Customer Satisfaction Data using the Binary Logistic Regression

    Magri, M. / Society of Automotive Engineers | British Library Conference Proceedings | 2008


    Automotive Customer Satisfaction Data Analysis Using Logistic Regression

    Grove, Dan / Campean, Felician / Zeppenfeld, Janet et al. | SAE Technical Papers | 2008


    Automotive customer satisfaction data analysis using logistic regression

    Grove,D. / Campean,F. / Zeppenfeld,J. et al. | Kraftfahrwesen | 2008


    2008-01-1468 Automotive Customer Satisfaction Data Analysis Using Logistic Regression

    Grove, D. / Campean, F. / Zeppenfeld, J. et al. | British Library Conference Proceedings | 2008


    Electromagnetic Susceptibility Data Analysis Using Multivariate Logistic Regression

    Ropiak, C.A. / Gardner, R.L. / Stoudt, D.C. et al. | British Library Conference Proceedings | 2007