Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved. It is noticed that in the edwards’s pipe test case immediately after the removal of the rupture disk, a sudden depressurization occurs at the pipe’s exit resulting in the onset of violent evaporation due to flashing which limits the pressure decrease to a value slightly below the saturation pressure. Later, the flash boiling model is applied to investigate a real-size 8-hole GDI injector from Engine Combustion Network (ECN). Preliminary analysis reveals intense generation of vapor due to flashing inside as well as at the nozzle exit, hole to hole interactions in the nozzle sac and appearance of stable string cavitation in multiple nozzle holes. Rate of injection and fuel mass density over radius 2mm from nozzle tip, compared with X-ray spray radiography experiments from Argonne National Laboratory (ANL), show a good agreement. Wide spray angles as in experiments, and spray plume to plume interaction due to asymmetrical flow field leading to nozzle tip wetting, are also observed in the investigation. Finally, an example is given for the application of the model in the context of a 3D CFD in-cylinder flow, spray, combustion and emission simulation supporting engineers in taking design decisions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    WCX SAE World Congress Experience ; 2020



    Erscheinungsdatum :

    2020-04-14




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Numerical Modeling of Spray Formation under Flash-boiling Conditions

    Meeks, Ellen / Liang, Long / Tao, Mingyuan et al. | SAE Technical Papers | 2020


    Numerical simulation research on the LNG flash boiling spray

    Xiao, Min / Fu, Yu | Taylor & Francis Verlag | 2018


    Numerical Study on Flash Boiling Spray of Multi-Hole Injector

    Sun, Kai / Jia, Ming / Shen, Shiquan et al. | SAE Technical Papers | 2017


    CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology

    Montanaro, Alessandro / De Vita, Angelo / Villante, Carlo et al. | SAE Technical Papers | 2020


    Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

    Hwang, Joonsik / Yasutomi, Koji / Pickett, Lyle M. et al. | SAE Technical Papers | 2020