The traditional Double Deep Q-Network (DDQN) algorithm suffers from slow convergence and instability when dealing with complex environments. Besides, it is often susceptible to getting stuck in a local optimal solution and may fail to discover the optimal strategy. As a result, Unmanned Ground Vehicle (UGV) cannot search for the optimal path. To address these issues, the study presents an Improved Dueling Double Deep Q Network (ID3QN) algorithm, which adopts dynamic ε-greed strategy, priority experience replay (PER) and Dueling DQN structure. Where, UGV solves the problem of insufficient exploration and overexploitation according to the dynamic ε-greed strategy. Moreover, high-priority experience examples are extracted using the priority experience replay approach. Meanwhile, the Dueling DQN method can effectively manage the relationship between state values and dominance values. According to the experiment’s accomplishments, the ID3QN method outperforms the DDQN approach in terms of stability and rate of convergence, and obtains a better path in UGV path planning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Improved Dueling Double Deep Q Network Algorithm and Its Application to the Optimized Path Planning for Unmanned Ground Vehicle


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Pang, Hui (Autor:in) / Liu, Lei (Autor:in) / Zheng, Lizhe (Autor:in) / Bai, Zekun (Autor:in) / He, Zhaonian (Autor:in)

    Kongress:

    SAE 2023 Intelligent and Connected Vehicles Symposium ; 2023



    Erscheinungsdatum :

    20.12.2023




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Path Planning with Improved Dueling DQN Algorithm for UAVs in Unknown Dynamic Environment

    Wang, Wenshan / Zhang, Guoyin / Da, Qingan et al. | Springer Verlag | 2024



    Research on Dueling Double Deep Q Network Algorithm Based on Single-Step Momentum Update

    Shi, Peicheng / Zhang, Jianguo / Hai, Bin et al. | Transportation Research Record | 2023


    Multi-Unmanned Aerial Vehicle Path Planning Based on Improved Nutcracker Optimization Algorithm

    Chang Xiao / Huiliao Yang / Bo Zhang | DOAJ | 2025

    Freier Zugriff