Three techniques for estimating mean square values of nonstationary random processes are analyzed and compared. These include ensemble averaging, orthogonal function approximation, and short time averaging. It is shown that ensemble averaging is useful only when the number of records available is large because of the estimation errors. The orthogonal function approximation technique is shown to be better than ensemble averaging, although more difficult to mechanize. It is also shown that short time averaging generally produces biased estimates. Finally, a brief discussion is presented on the selection of the best technique to implement for particular applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mean Square Measurements of Nonstationary Random Processes


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE World Congress & Exhibition ; 1964



    Erscheinungsdatum :

    01.01.1964




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Mean and mean square measurements of nonstationary random processes

    Thrall, George P. / Bendat, Julius S. | TIBKAT | 1965




    Generating Nonstationary Random Sequences

    Mitchell, R. L. / Mcpherson, D. A. | IEEE | 1981


    Modeling Nonstationary Random Processes with an Application to Gyro Drift Rate

    Van Dierendonc, Albert J. / Brown, Robert G. | IEEE | 1969