Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection. A commercially available e-scooter was instrumented to measure acceleration and velocity, steering angle, roll angle, and GPS position. Operators ranging from the 15th percentile to the 85th percentile were instrumented with wearable sensors to gain insight into the positions, velocities, and accelerations of the head, torso, and extremities. Additionally, load cells were mounted on the ride platform to provide data related to dynamic weight transfer. Analysis of video, wearable sensor data, and scooter instrumentation data provided insight into the vehicle dynamics and operator kinematics with varying operator anthropometry, contributing to discussion of the capabilities and limitations of this popular micro-mobility transportation mode.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Garman, Christina MR (Autor:in) / Campbell, Ian C. (Autor:in) / Wishart, Jeffrey (Autor:in) / O'Brien, Kevin (Autor:in) / McLean, Scott (Autor:in) / Como, Steven G. (Autor:in)

    Kongress:

    WCX SAE World Congress Experience ; 2020



    Erscheinungsdatum :

    2020-04-14




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

    Garman, Christina M. R. / Como, Steven G. / Campbell, Ian C. et al. | British Library Conference Proceedings | 2020


    Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

    Garman, Christina MR / Como, Steven G. / Campbell, Ian C. et al. | British Library Conference Proceedings | 2020


    Rider propelled scooter

    FRIEND KEVIN | Europäisches Patentamt | 2021

    Freier Zugriff

    ELECTRIC MOBILITY SCOOTER

    HIRATA YOSHIHIRO / UCHINO TSUYOSHI | Europäisches Patentamt | 2021

    Freier Zugriff

    The influence of frame compliance and rider mobility on the scooter stability

    Cossalter, Vittore / Lot, Roberto / Massaro, Matteo | Taylor & Francis Verlag | 2007