A fiber optical heterodyne interferometry system was developed to obtain high temporal resolution temperature histories of unburned and burned gases non-intrusively. The effective optical path length of the test beam changes with the gas density and corresponding changes of the refractive index. Therefore, the temperature history of the gas can be determined from the pressure and phase shift of the interference signal. The resolution of the temperature measurement is approximately 0.5 K, and is dependent upon both the sampling clock speed of the A/D converter and the length of the test section. A polarization-preserving fiber is used to deliver the test beam to and from the test section, to improve the feasibility of the system as a sensor probe. This optical heterodyne interferometry system may also be used for other applications that require gas density and pressure measurements with a fast response time, or a transient temperature record.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Transient Temperature Measurement of Gas Using Fiber Optic Heterodyne Interferometry


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    International Spring Fuels & Lubricants Meeting ; 2001



    Erscheinungsdatum :

    07.05.2001




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Transient Temperature Measurement of Gas Using Fiber Optic Heterodyne Interferometry

    Kawahara, N. / Tomita, E. / Kamakura, H. et al. | British Library Conference Proceedings | 2001



    Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

    Lee, Changhee / Tomita, Eiji / Inoshita, Kenji et al. | SAE Technical Papers | 2007


    Plasma Density Measurements for Aero-Optic Applications Using Two-Wavelength Heterodyne Interferometry

    Neiswander, Brian W. / Matlis, Eric H. / Corke, Thomas C. | AIAA | 2016