The City Lightweight and Innovative Cab (CLIC) project was a scientific collaboration gathering public and private organizations. The aim was to propose an innovative lighten truck cab, where a high strength steel was used. As long as it could affect directly the acoustic environment of the cab, it was necessary to be able to simulate the vibroacoustic behavior of the truck cab in the mid frequency range. The dissipative treatments used for noise and vibration control such as viscoelastic patches and acoustic absorbing materials must then be taken into account in the problem. A process based on the SmEdA (Statistical modal Energy distribution Analysis) method was developed and is presented in this paper. SmEdA allows us substructuring the global problem, to study the interaction between the floor and the interior cavity. The process consists in building finite element models (FEM) of each subsystem (floor, internal cavity), including the dissipative material (damping layer, poroelastic material). Standard modal FEM calculations are then performed for each uncoupled subsystem. From the spatial mode shapes, and the modal strain -kinetic energies, the modal loss factors of both subsystems are estimated. Finally, the pressure levels inside the cavity are deduced from the resolution of the SmEdA equations. To validate this process, a truck cabin has been excited mechanically on a rail of the floor and the pressure levels at different positions inside the cabin were measured for different configurations of dissipative treatment. Comparisons between SmEdA and experimental results allows us to assess the accuracy of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SmEdA Vibro-Acoustic Modeling of a Trimmed Truck Cab in the Mid-Frequency Range


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Sandier, Céline (Autor:in) / Hwang, Ha Dong (Autor:in) / Guyader, Jean-Louis (Autor:in) / Ege, Kerem (Autor:in) / Maxit, Laurent (Autor:in) / Gerges, Youssef (Autor:in)

    Kongress:

    10th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference ; 2018



    Erscheinungsdatum :

    2018-06-13




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Vibro-Acoustic Modeling of a Trimmed Truck Cabin in Low Frequency Range to Tackle the Challenge of Weight Reduction

    Sandier, Céline / Acher, Fabien / Ege, Kerem et al. | SAE Technical Papers | 2018


    Vibro-acoustic optimisation process based on hybrid SEA modelling of a trimmed body vehicle

    Bartosch, T. / Muller, G. / Eggner, T. et al. | British Library Conference Proceedings | 2007


    Finite element modeling method of vibro-acoustic systems for mid-frequency simulation

    Hodgkins,J.R. / Brophy,W. / Gaydosh,T. et al. | Kraftfahrwesen | 2016


    Demonstration of Vibro-Acoustic Reciprocity including Scale Modeling

    Herrin, D. W. / Liu, J. / Zhou, L. | SAE Technical Papers | 2011


    Demonstration of vibro-acoustic reciprocity including scale modeling

    Liu,J. / Zhou,L. / Herrin,D.W. et al. | Kraftfahrwesen | 2011