Heat transfer optimization is a crucial aspect of the design process for Formula Student race cars, particularly for the radiator, usually housed in a side pod. For the car to operate at peak performance, a well-designed radiator-sidepod system is essential such that it can dissipate heat generated by the engine faster, for the car to run in optimal performance. Testing the car physically for various radiator-sidepod design iterations is a very difficult task, also considering the costs to manufacture the radiator-sidepod setup. The objective of this study is to develop a comprehensive methodology for analysing heat transfer through radiator setup using Computational Fluid Dynamics and to validate it through experimental investigations, to enhance performance and efficiency of the radiator setup. It further explains how to find out its heat transfer efficiency, and to choose the right radiator-sidepod setup, giving optimal performance. The flow of coolant inside the radiator, as well as external air flow through sidepod, is considered for realistic results in numerical analysis. Various radiator dimensions and sidepod designs are considered in the scope of this paper. The heat transfer simulation is performed in ANSYS Fluent, and their results compared. The final radiator-sidepod setup concluded as optimal setup in this study provided an average temperature drop of 2.9 °C through experiment and 2.72 °C through numerical analysis, providing uniform airflow through the radiator face with less dirty air.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical Analysis and Optimization of Heat Transfer for FSAE Radiator for Various Sidepod Designs


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility ; 2023



    Erscheinungsdatum :

    2023-11-10




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Application of a Diverging-Converging Duct to a FSAE Radiator System

    Thomas, Bryce / Agarwal, Ramesh K. | AIAA | 2020


    APPLICATION OF A DIVERGING-CONVERGING DUCT TO A FSAE RADIATOR SYSTEM

    Thomas, Bryce / Agarwal, Ramesh K. | TIBKAT | 2020


    Loads Analysis and Optimization of FSAE Race Car Frame

    Yang, Lei / Li, Qiang / Wang, Chuxuan et al. | British Library Conference Proceedings | 2017


    FSAE racing car heat dissipation assembly

    TU KAINAN / LIN JIMING / HONG BIXIANG et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Loads Analysis and Optimization of FSAE Race Car Frame

    Wang, Chuxuan / Yang, Lei / Li, Qiang et al. | SAE Technical Papers | 2017