Simulation of road loads in truck suspensions generally requires leaf-spring models. This paper presents a simple and accurate leaf-spring model that can be effectively used in analytical road load simulations using ADAMS software. The model topology is based on the familiar SAE “three-link” model. The model parameters are identified from static force-deflection test data. Alternatively, the parameters can be identified from a target design specification or from analytical “tests” on a detailed finite element model. The new leaf spring model has been validated for static and dynamic performance using laboratory test data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Three-Link Leaf-Spring Model for Road Loads


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Alanoly, J. (Autor:in) / Jayakumar, P. (Autor:in) / Johnson, R. (Autor:in)

    Kongress:

    SAE 2005 World Congress & Exhibition ; 2005



    Erscheinungsdatum :

    11.04.2005




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Three-link leaf-spring model for road loads

    Jayakumar,P. / Alanoly,J. / Johnson,R. et al. | Kraftfahrwesen | 2005


    2005-01-0625 Three-Link Leaf-Spring Model for Road Loads

    Jayakumar, P. / Alanoly, J. / Johnson, R. et al. | British Library Conference Proceedings | 2005


    Enhanced SAE 3 link Leaf Spring Model to Generate Durability Virtual Loads

    Venkatesan, Dhanasekar / Dixit, Navnit / Pardeshi, Ravasaheb | SAE Technical Papers | 2022


    Enhanced SAE 3 link Leaf Spring Model to Generate Durability Virtual Loads

    Dixit, Navnit / Pardeshi, Ravasaheb / Venkatesan, Dhanasekar | British Library Conference Proceedings | 2022


    Enhanced SAE 3 link Leaf Spring Model to Generate Durability Virtual Loads

    Dixit, Navnit / Pardeshi, Ravasaheb / Venkatesan, Dhanasekar | British Library Conference Proceedings | 2022