On the basis of extensive experimental works about heterogeneous catalysts, we developed various software for the design of automotive catalysts such as Ultra-Accelerated Quantum Chemical Molecular Dynamics (UA-QCMD), which is 10 million times faster than the conventional first principles molecular dynamics, mesoscopic modeling software for supported catalysts (POCO2), and mesoscopic sintering simulator (SINTA) to calculate sintering behavior of both precious metals (e.g., Pt, Pd, Rh) and supports (e.g., Al2O3, ZrO2, CeO2, or CeO2-ZrO2). We integrated the previous programs in a multiscale, multiphysics approach for the design of automotive catalysts. The method was efficient for a variety of important catalytic reactions in the scope of the automotive emission control. We demonstrated the efficiency of our approach by comparing our data with experimental results including both simple laboratory experiments and chassis dynamometer exhaust gas emission control experiments. We also demonstrated that the UA-QCMD method is an efficient tool for the estimation of mesoscopic sintering activation energies for both precious metals and supports. On the basis of our successful applications of the UA-QCMD to various important chemical processes of exhaust emission controls and sintering predictions of both precious metals and support of automotive catalysts, we employed in the present study artificial intelligence to determine fundamental parameters from all electron density functional methods and thermodynamic results. This new technique was proven highly efficient for optimizing parameters necessary in our simulations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiscale, Multiphysics Computational Chemistry Methods Based on Artificial Intelligence Integrated Ultra-Accelerated Quantum Molecular Dynamics for the Application to Automotive Emission Control


    Weitere Titelangaben:

    Sae Int. J. Engines


    Beteiligte:
    Suzuki, Ai (Autor:in) / Miyamoto, Akira (Autor:in) / Inaba, Kenji (Autor:in) / Sato, Manami (Autor:in) / Hariyama, Masanori (Autor:in) / Sato, Masashi (Autor:in) / Miyamoto, Naoto (Autor:in) / Hatakeyama, Nozomu (Autor:in) / Bonnaud, Patrick (Autor:in) / Komuro, Rei (Autor:in)

    Kongress:

    SAE/JSAE 2016 Small Engine Technology Conference & Exhibition ; 2016


    Erschienen in:

    Erscheinungsdatum :

    2016-11-08


    Format / Umfang :

    8 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    ACCELERATED MULTIPHYSICS ASSESSMENT FOR AIRBAG DESIGN

    VALENZUELA DEL RIO JOSE / MIRABELLA LUCIA / MOTHEAU EMMANUEL et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Automotive Engineering Applications of Multiphysics Simulation

    Rifai, S. M. / Buell, J. C. / Johan, Z. et al. | British Library Conference Proceedings | 1999