The lack of a large number of crash data waveforms can limit the reliability of electronic Crash Detection Algorithms (CDAs). This paper discusses how statistics and the Monte Carlo (MC) method can be used to generate a large number of crash waveforms, and therefore increase CDA reliability. The MC method is used to model a crash waveform into two parts: 1) an underlying crash waveform, and 2) noise superimposed on the crash. The noise statistics are then varied and recombined with the underlying crash waveform to generate a large number of new crash waveforms. In addition Rough Road models were developed and concatenated with crash waveforms to better simulate real life. Finally a comparison between two CDAs was performed. The results show that one CDA is more robust than the other.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automobile Crash Modeling and the Monte Carlo Method


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    International Congress & Exposition ; 1992



    Erscheinungsdatum :

    01.02.1992




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Automobile crash modeling and the Monte Carlo method

    Piskie, M.A. / Gioutsos, T. | Tema Archiv | 1992


    Automobile crash modeling and the Monte Carlo method

    Piskie,M.A. / Gioutsos,T. / Automotive Systems Lab.,US | Kraftfahrwesen | 1992


    Sensitivity of Monte Carlo Modeling in Crash Reconstruction

    Fleck, Garrett / Daily, Jeremy | SAE Technical Papers | 2010


    Sensitivity of Monte Carlo modeling in crash reconstruction

    Fleck,G. / Daily,J.S. / The Univ.of Tulsa,US | Kraftfahrwesen | 2010


    2010-01-0071 Sensitivity of Monte Carlo Modeling in Crash Reconstruction

    Fleck, G. / Daily, J.S. / Society of Automotive Engineers | British Library Conference Proceedings | 2010