Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.This research experimentally verifies a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle.Engine cold start events are aggressively addressed in the development of this control system, which leads to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy. The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain “torque shaping” algorithms.The results of the research show that PHEVs do have the potential for substantial reductions in fuel consumption. Tailpipe emissions from a PHEV test platform have been reduced to acceptable levels through the development and refinement of vehicle supervisory control methods only. Impacts on fuel consumption were minimal for the emissions reduction techniques implemented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods


    Weitere Titelangaben:

    Sae Int. J. Engines


    Beteiligte:
    Irick, David (Autor:in) / Smith, David (Autor:in) / Lohse-Busch, Henning (Autor:in)

    Kongress:

    SAE 2010 World Congress & Exhibition ; 2010


    Erschienen in:

    Erscheinungsdatum :

    12.04.2010


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

    Walsh, P. / Nelson, D. / Society of Automotive Engineers | British Library Conference Proceedings | 2012


    Catalysts for worldwide control of vehicle tailpipe emissions

    Mondt,J.R. / General Motors,US | Kraftfahrwesen | 1993


    Supervisory control of Plug-in Hybrid Electric Vehicle with hybrid dynamical system

    Banvait, Harpreetsingh / Hu, Jianghai / Chen, Yaobin | IEEE | 2012


    93EN033 Catalysts for Worldwide Control of Vehicle Tailpipe Emissions

    Mondt, J. R. / ISATA / ENEA; Agency: Italy | British Library Conference Proceedings | 1993