A fuel design concept for an HCCI engine based on chemical kinetics to optimize the heat release profile and achieve robust ignition was proposed, and applied to the design of the optimal methane-based blend.Ignition process chemistry of each single-component of natural gas, methane, ethane, propane, n-butane and isobutane, was analyzed using detailed chemical kinetic computations. Ethane exhibits low ignitability, close to that of methane, when the initial temperature is below 800 K, but higher ignitability, close to those of propane, n-butane and isobutane, when the initial temperature is above 1100 K. Furthermore, ethane shows a higher heat release rate during the late stage of the ignition process. If the early stage of an ignition process takes place during the compression stroke, this kind of heat release profile is desirable in an HCCI engine to reduce cycle-to-cycle variation during the expansion stroke.According to results from engine operation tests using dual-component fuels with methane as the primary component and ethane, propane, n-butane and isobutane as the secondary component, methane/ethane shows a lower COV of IMEP when CA50 is set at the same timing for the expansion stroke. Furthermore, methane/ethane also shows a lower knocking intensity when CA50 is set at the same timing, close to the knocking limit, due to its lower in-cylinder pressure rise rate.These results suggest that methane/ethane can be the optimal methane-based blend for an HCCI engine to achieve both better fuel economy and higher performance by its robust ignition and high anti-knocking properties.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fuel Design Concept for Robust Ignition in HCCI Engine and Its Application to Optimize Methane-Based Blend


    Weitere Titelangaben:

    Sae Int. J. Engines


    Beteiligte:
    Tanaka, Hiroki (Autor:in) / Ando, Hiromitsu (Autor:in) / Kuwahara, Kazunari (Autor:in) / Somezawa, Shunsuke (Autor:in) / Sako, Takahiro (Autor:in) / Sakai, Yasuyuki (Autor:in)

    Kongress:

    SAE 2014 World Congress & Exhibition ; 2014


    Erschienen in:

    Erscheinungsdatum :

    2014-04-01


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Chemical Kinetics Study on Small-Alkane Ignition Process to Design Optimum Methane-Based Blend for HCCI

    Tanaka, Hiroki / Ando, Hiromitsu / Kuwahara, Kazunari et al. | SAE Technical Papers | 2014


    Concept and implementation of a robust HCCI engine controller

    Kang,J.M. / Chang,C.F. / Chen,J.S. et al. | Kraftfahrwesen | 2009


    Axial fuel stratification of homogeneous charge compression ignition ( HCCI ) engine

    Aleiferis,P.G. / Charalambides,A.G. / Hardalupas,Y. et al. | Kraftfahrwesen | 2007


    Integration of fuel auto-ignition characteristics and HCCI engine operation

    Floweday,G. / Yates,A.D. / Univ.of Cape Town,ZA | Kraftfahrwesen | 2008