In the present paper the combustion process in a modern second generation Common Rail Diesel engine for light duty application is experimentally and numerically investigated. An improved version of the KIVA3V-Release 2 code was used for the simulations.To model the combustion process, a detailed kinetic scheme involving 57 species and 290 equations, based on the n-heptane combustion, was used, interfacing the KIVA3V code with the CHEMKIN-II chemistry package. The full set of equations is concurrently solved in each computational cell by different solvers with the final aim of obtaining a locally adaptative code: local choices are undertaken in terms of time steps as well as in terms of the employed solvers. To reduce computational time, the code was parallelized: this parallelization is mainly focused on the chemical subroutines, considering that they are responsible for more than the 95% of the computing. Due to the spatial in-homogeneous characteristics of diesel combustion, the grid partitioning is a key point for efficient computation. Therefore, different grid partitioning criteria were used and analyzed in terms of “divide and conquer” advantages and load balancing issues. The performance analysis suggests that a random partitioning criterion is useful to smooth the grid in-homogeneities over the processes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multidimensional Modeling of Advanced Diesel Combustion System by Parallel Chemistry


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Bertoli, C. (Autor:in) / Belardini, P. (Autor:in) / D'Ambra, P. (Autor:in) / Corsaro, S. (Autor:in)

    Kongress:

    SAE 2005 World Congress & Exhibition ; 2005



    Erscheinungsdatum :

    2005-04-11




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Multidimensional modeling of advanced diesel combustion system by parallel chemistry

    Belardini,P. / Bertoli,C. / Corsaro,S. et al. | Kraftfahrwesen | 2005



    Multidimensional Modeling of Injection and Combustion Phenomena in a Diesel Ignited Gas Engine

    Wimmer, Andreas / Kiesling, Constantin / Pirker, Gerhard et al. | SAE Technical Papers | 2017



    Multidimensional Modeling of a Six-Mode Diesel Test Cycle using a PDF Combustion Model

    Lee, D. / Rutland, C. J. / Society of Automotive Engineers | British Library Conference Proceedings | 2000