Recognition of the necessity of connected and automated vehicles (CAVs) in transportation systems is gaining momentum. CAVs can improve the transportation network efficiency and safety by sharing information and cooperative control. This article addresses the problem of coordinating CAVs at highway on-ramps to achieve smooth traffic flow. We develop a multi-agent reinforcement learning (MARL) method based on value decomposition and centralized control to coordinate CAVs. The simulation results show that the proposed collaborative decision-making framework can effectively coordinate dynamic traffic flows and improve the metrics by more than 10% compared to the baseline methods under high traffic demand scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-agent Decision-Making Framework Based on Value Decomposition for Connected Automated Vehicles at Highway On-Ramps


    Weitere Titelangaben:

    Sae Intl. J Cav


    Beteiligte:
    Wang, Jinzhu (Autor:in) / Zhu, Xichan (Autor:in) / Ma, Zhixiong (Autor:in)


    Erscheinungsdatum :

    16.01.2023


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Cooperative merging strategy for connected and automated vehicles at highway on-ramps

    Guan, Xiao-Kui / Hu, Mao-Bin | British Library Conference Proceedings | 2022



    Cooperative Merging Strategy for Connected Vehicles at Highway On-Ramps

    Xu, Linghui / Lu, Jia / Ran, Bin et al. | ASCE | 2019


    Multi-lane-merging strategy for connected automated vehicles on freeway ramps

    Luo, Xiaoling / Li, Xiaofeng / Razaur Rahman Shaon, Mohammad et al. | Taylor & Francis Verlag | 2023