In modern cars, the Advanced Driver Assistance Systems (ADAS) is cardinal point for safety and regulation. The proposed method detects visual saliency region in a given image. Multiple ADAS systems require number of sensors and multicore processors for fast processing of data in real time, which leads to the increase in cost. In order to balance the cost and safety, the system should process only required information and ignore the rest. Human visual system perceives only important content in a scene while leaving rest of portions unprocessed. The proposed method aims to model this behavior of human visual system in computer vision/image processing applications for eliminating non salient objects from an image. A region is said to be salient, if its appearance is unique. In our method, the saliency in still images is computed by local color contrast difference between the regions in Lab space. In addition, the motion information is an important feature which is incorporated with image fixation map to produce final saliency for videos. Experimental results on standard datasets show that the proposed method produces saliency map with well-defined object boundaries. In comparison with other existing state of art methods, the proposed algorithm suppresses the background information efficiently.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection of Visual Saliency Region for ADAS Applications


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2015 World Congress & Exhibition ; 2015



    Erscheinungsdatum :

    14.04.2015




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Detection of Visual Silency Region for ADAS Applications

    Deshpande, Ramya / Kutty, Krishnan / Mani, Shanmugaraj | British Library Conference Proceedings | 2015


    ADAS ADAS monitoring event system

    KIM YEONG HUN | Europäisches Patentamt | 2021

    Freier Zugriff

    Vehicle Control in ADAS Applications

    Perallos, Asier / Hernandez‐Jayo, Unai / Onieva, Enrique et al. | Wiley | 2015


    ADAS OBSTACLE DETECTION METHOD OF VIRTUAL RADAR SENSOR FOR VEHICLE ADAS TEST

    LEE HYEONG CHEOL / YOON KYUNG SUP / PARK CHANG WOO | Europäisches Patentamt | 2019

    Freier Zugriff

    AI ADAS AI BASED ADAS ROOM-MIRROR

    CHOI KWANG JOO | Europäisches Patentamt | 2021

    Freier Zugriff