Heat transfer losses are one of the largest loss contributions in a modern internal combustion engine. The aim of this study is to evaluate the contribution of the piston bowl type and swirl ratio to heat losses and performance. A commercial CFD tool is used to carry out simulations of four different piston bowl geometries, at three engine loads with two different swirl ratios at each load point. One of the geometries is used as a reference point, where CFD results are validated with engine test data. All other bowl geometries are scaled to the same compression ratio and make use of the same fuel injection, with a variation in the spray target between cases. The results show that the baseline case, which is of a conventional diesel bowl shape, provides the best emission performance, while a more open, tapered, lip-less combustion bowl is the most thermodynamically efficient. The results also show that the response of the flow field, due to swirl variations, is not the same for all piston configurations and, therefore, the effects of swirl on heat transfer are not the same for all piston geometries.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2014 World Congress & Exhibition ; 2014



    Erscheinungsdatum :

    2014-04-01




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Effect of Piston Bowl Shape, Swirl Ratio and Spray Angle on Combustion and Emission in Off Road Diesel Engine

    Jadhao, Mangeshkumar / Quazi, Muzaffar Ali / Singh, Shakti Kumar | SAE Technical Papers | 2015


    Effect of Piston Bowl Shape, Swirl Ratio and Spray Angle on Combustion and Emission in Off Road Diesel Engine

    Quazi, M.A. / Singh, S.K. / Jadhao, M. et al. | British Library Conference Proceedings | 2015


    Prediction of the in-piston-bowl swirl ratio of diesel engines

    Sun, Yanzhe / Wang, Tianyou / Wen, Ming et al. | SAGE Publications | 2019



    Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

    Guo, Zexian / He, Xin / Pei, Yuanjiang et al. | British Library Conference Proceedings | 2020