Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development


    Weitere Titelangaben:

    Sae Int. J. Mater. Manf
    Sae International Journal of Materials and Manufacturing


    Beteiligte:
    Zeng, Danielle (Autor:in) / Mirdamadi, Mansour (Autor:in) / Zhao, Qiangsheng (Autor:in) / Su, Xuming (Autor:in) / Li, Yang (Autor:in)

    Kongress:

    SAE 2016 World Congress and Exhibition ; 2016



    Erscheinungsdatum :

    2016-04-05


    Format / Umfang :

    8 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Woven Fabric Composite Material Model With Material Nonlinearity for Nonlinear Finite Element Simulation

    Tabiei, A. / Jiang, Y. / ASME; Applied Mechanics Division et al. | British Library Conference Proceedings | 1997


    Impact resonse of affordable graphite/epoxy woven fabric composites

    Hosur, M. / Alexander, J. / Jeelani, S. et al. | AIAA | 2001


    Processing and Characterization of Epoxy/SWCNT/Woven Fabric Composites

    Thakre, Piyush / Lagoudas, Dimitris / Zhu, Jiang et al. | AIAA | 2006


    Mechanical properties of co-woven-knitted fabric/epoxy composites incorporating carbon nanotubes

    Ma, P. / Jiang, G. / Yu, L. et al. | British Library Online Contents | 2015


    Finite Element Modelling of Triaxial Woven Fabric ...

    Palermo, Giuseppe N. / Barboni, Renato / de Benedetti, Manuel | AIAA | 2005