The two main motivations for Wayne State University (WSU) and Henry Ford Hospital (HFH) researchers to develop numerical human surrogates are advanced computing technology and a high-speed x-ray imaging device not available just a decade ago. This paper summarizes the capabilities and limitations of detailed component models of the human body, from head to foot, developed at WSU over the last decade (Zhang et al. 2001, Yang et al. 1998, Shah et al. 2001, Iwamoto et al. 2000, Lee et al. 2001 and Beillas et al. 2001). All of these models were validated against global response data obtained from relevant high-speed cadaveric tests. Additionally, some models were also validated against local kinematics of bones or soft tissues obtained using the high-speed x-ray system.All of these models have been scaled to conform to the key dimensions of a 50th percentile male. Because of this geometric compatibility, two or more component models can be integrated into a single model using the tie interface definition. Our current effort is to integrate all of these models into a whole body model, with emphasis on obtaining local kinematic response, using the high-speed x-ray system, for a more rigorous validation of the models. Upon the successful validation of local response, the whole body human model will be more advanced than the present-day crash dummies and will be the surrogate of choice for use in future automotive safety designs. Moreover, applications of these models could be extended to the intelligent design of a helmet which can provide equal protection for impacts from any direction as well as to the design of body armor and other ballistic protection devices.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Advanced Human Modeling for Injury Biomechanics Research


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    King, A. I. (Autor:in) / Demetropoulos, C. (Autor:in) / Shah, C. (Autor:in) / Lee, J. B. (Autor:in) / Yang, K. H. (Autor:in) / Zhang, L. (Autor:in) / Beillas, P. (Autor:in) / Tashman, S. (Autor:in) / Hardy, Warren N. (Autor:in)

    Kongress:

    Digital Human Modeling for Design and Engineering Conference and Exhibition ; 2003



    Erscheinungsdatum :

    17.06.2003




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Advanced Human Modeling for Injury Biomechanics Research

    Yang, K. H. / Beillas, P. / Zhang, L. et al. | British Library Conference Proceedings | 2003


    Biomechanics in crash injury research

    Kroell, C. K. / Gadd, C. W. / Schneider, D. C. | TIBKAT | 1973


    Biomechanics in crash injury research

    Kroell, C.K. / Gadd, C.W. / Schneider, D.C. | Tema Archiv | 1974


    INJURY BIOMECHANICS

    Viano, D. / Centre International des Sciences Mechaniques | British Library Conference Proceedings | 2001


    Brain injury biomechanics

    Melvin,J.W. / Lighthall,J.W. / Ueno,K. | Kraftfahrwesen | 1994