3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it has been reported that the 3D printed parts exhibit anisotropic behaviors in microstructure and mechanical properties, that is, depending on the positions (infill orientations) that the parts are placed on a printer platform, the properties of resultant parts can vary greatly. So far, studies on anisotropic behaviors of 3D printed parts have been mostly limited to the static properties (modulus of elasticity, failure strength, etc.); there is a lack on the understanding of mechanical responses of 3D printed parts under dynamic conditions. In the present study, the anisotropic behaviors of 3D printed parts are investigated from the dynamic aspect. Carbon-fiber reinforced ABS (acrylonitrile butadiene styrene) composite plates are 3D printed at various infill orientations. The plates are tested using a dynamic mechanical tester and the mode frequencies are measured. The plates are further modeled by using finite element method and additional modal characteristics are obtained. It is observed that the changes in orientation of 3D printed infill have resulted in significant changes in the mode frequencies of the composite plates. Depending on the boundary conditions of the plates (top-bottom fixed or left-right fixed), the first mode frequency would exhibit continuous decrease or increase, with a maximum change up to 117%. The changes in orientation in 3D printed infill have also altered the modal shapes of the plates. The modal characteristics, including mode indexes, model lines, etc., have changed dramatically, particularly at higher vibration modes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anisotropic Dynamic Mechanical Properties of 3D Printed Carbon-Fiber Composites


    Weitere Titelangaben:

    Sae Int. J. Adv. and Curr. Prac. in Mobility


    Beteiligte:
    Garcia, Jordan (Autor:in) / Lu, Y Charles (Autor:in)

    Kongress:

    WCX SAE World Congress Experience ; 2022



    Erscheinungsdatum :

    2022-03-29


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Effect of Fiber Content on Anisotropic Behavior of 3D Printed Fiber Composites

    Sibley, Brian / Garcia, Jordan / Smith, Sayer et al. | SAE Technical Papers | 2023


    Anisotropic mechanical properties of lattice grid composites

    Fan, H.L. / Fang, D.N. | Tema Archiv | 2008


    Preparation and Mechanical Properties of Aligned Discontinuous Carbon Fiber Composites

    DENG Hua / GAO Junpeng / BAO Jianwen | DOAJ | 2018

    Freier Zugriff

    Characterizing Mechanical Properties of Hybrid Alumina Carbon Fiber Composites with Piezospectroscopy

    Hanhan, Imad / Selimov, Alex P. / Carolan, Declan et al. | AIAA | 2016


    3D Printed Carbon Fiber Reinforced Polymeric Composites in Tension

    Curtis, Peyton / Frankowski, Andrew / Tan, Kwek Tze | AIAA | 2024