Pumping losses are one of the primary energy losses in throttled spark ignition engines. In order to reduce fuel consumption, engine manufacturers are incorporating devices that deactivate the valve-train in some cylinders. In the operating strategies currently implemented in the market, fixed sets of cylinders are deactivated, allowing 2 or 3 operating modes. In contrast, Tula Technology has developed Dynamic Skip Fire (DSF), in which the decision of whether or not to fire a cylinder is decided on a cycle-by-cycle basis. Testing the DSF technology in an independent certified lab on a 2010 GMC Denali, reduces the fuel consumption by 18% on a cycle-average basis, and simultaneously increases the ability to mitigate noise and vibration at objectionable frequencies.This paper outlines the results of the experiments that have been conducted on an eight cylinder engine over a wide range of conditions to investigate the fuel consumption gains and emissions impact when incorporating DSF technology. The experiments have been carried out over a wide range of engine speeds, loads, and DSF strategies and significant improvements have been observed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition Engines


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2016 World Congress and Exhibition ; 2016



    Erscheinungsdatum :

    05.04.2016




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Fuel Economy Gains through Dynamic-Skip-Fire in Spark Ignition Engines

    Eisazadeh-Far, Kian / Younkins, Matthew | British Library Conference Proceedings | 2016




    Recuperative thottling of spark ignition engines for improved fuel economy

    Guzzella,L. / Betschart,M. / Fluri,T. et al. | Kraftfahrwesen | 2004


    Fuel economy in road vehicles powered by spark ignition engines

    Hilliard, John C. ;Springer, George S | TIBKAT | 1984