The use of low-density materials in body panels is increasing as a measure to reduce the weight of the vehicle body. Honda has developed an aluminum/steel sheet hybrid door that is more effective in reducing weight than an all-aluminum door. Because aluminum was used in the door skin, bimetallic corrosion at the connection between the aluminum and the steel sheets represented an issue. It was possible that the difference in the electrical potential of the two metals might promote corrosion at the connection between the aluminum door skin and the steel sheet door panel, in particular at the lower edge of the door, where rainwater and other moisture tend to accumulate, with the result that the appeal of the exterior of the door might decline. To address this issue, a watertight structure realized through the use of a high-ductility sealer was employed in order to help prevent water from infiltrating to the connection between the metals, and steel sheets with a zinc-aluminum-magnesium alloy coating, highly effective in controlling bimetallic corrosion, were employed in the door panels. This produced rust-resistance specifications for the hybrid door able to maintain durability in market use environments. This paper discusses the effect of the zinc-aluminum-magnesium alloy-coated steel sheets in controlling bimetallic corrosion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Structure to Assist in the Prevention of Bimetallic Corrosion of Hybrid Doors


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Kimura, Shoji (Autor:in)

    Kongress:

    SAE 2013 World Congress & Exhibition ; 2013



    Erscheinungsdatum :

    2013-04-08




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Structure to assist in prevention of bimetallic corrosion of hybrid doors

    Kimura,S. / Honda Motor,JP | Kraftfahrwesen | 2013


    The Prevention of Galvanic Corrosion in Bimetallic Assemblies

    Rowe, Leonard C. | SAE Technical Papers | 1974


    Departure prevention device for elevator doors

    JUNG KWANG YONG | Europäisches Patentamt | 2020

    Freier Zugriff

    Power assist control for slide doors using an ideal door model

    Osamura, Kensuke / Shinya Kobayashi, / Mitsuo Hirata, et al. | IEEE | 2008


    FALL PREVENTION BELTS FOR RAILROAD VEHICLE DOORS

    HWANG SOON HWAN | Europäisches Patentamt | 2023

    Freier Zugriff