SI engines are dynamic systems with highly nonlinear characteristics which are controlled by ECUs performing complex control algorithms. Hardware-in-the-Loop (HIL) simulation is an important tool to support test and verification during the development phase. The simulation model has to accurately reflect the dynamic behavior of the SI engine in the whole operating area. This paper describes a neural network approach to identify, i.e. to model a nonlinear dynamic system, the SI engine, represented only by I/O measurement data. The neural models have advantages with respect to robustness and measuring extent. They can be used as stand alone models or as sub-models integrated in a global model based on a physical structure. Measurements from a test bench compared to real-time simulation results prove the performance of the proposed modeling strategy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SI Engine Modeling Using Neural Networks


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Lichtenthäler, D. (Autor:in) / Theuerkauf, H. J. (Autor:in) / Ayeb, M. (Autor:in) / Winsel, T. (Autor:in)

    Kongress:

    International Congress & Exposition ; 1998



    Erscheinungsdatum :

    23.02.1998




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    SI Engine Modeling Using Neural Networks

    Ayeb, M. / Lichtenthaeler, D. / Winsel, T. et al. | British Library Conference Proceedings | 1998


    Modeling space shuttle main engine using feed-forward neural networks

    Saravanan, N. / Duyar, A. / Guo, T.-H. et al. | AIAA | 1994


    Engine monitoring using neural networks

    Cifaldi, Melissa / Chokani, Ndaona | AIAA | 1998


    Engine Monitoring Using Neural Networks

    Cifaldi, M. L. / Chokani, N. / American Institute of Aeronautics and Astronautics et al. | British Library Conference Proceedings | 1998


    Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

    Rutland, Christopher J. / He, Yongsheng | SAE Technical Papers | 2002